Bitcoin Transaction Fee Comparison CryptoCoins Info Club

Ethereum & Bitcoin transactions per day vs avg transaction fee & price comparison

Ethereum & Bitcoin transactions per day vs avg transaction fee & price comparison submitted by investmox to ethtrader [link] [comments]

Transaction fee (in USD) comparison between Bitcoin Core, Ethereum, Litecoin and Bitcoin Cash.

Transaction fee (in USD) comparison between Bitcoin Core, Ethereum, Litecoin and Bitcoin Cash. submitted by SwedishSalsa to btc [link] [comments]

Comparison of Transaction Speed, Limit, and Fee- Bitcoinreal VS Bitcoin

Businessmen are diverting towards digital currency from normal currency. So, in this scenario, Transaction speed, limit, and fee are very essential for a merchant. Before choosing any one of the platform from digital currency, a merchant doesn’t only keep in mind about its circulation/inflation rate/liquidity, but he also keeps in mind about its truncation cost, limit, and speed. These things matter a lot for a merchant to spread his business. In today’s post, I’m going to discus some of the differences among Bitcoinreal and Bitcoin.
Bitcoinreal can do 50 million transactions per day by charging 0.2 percent fee in every transaction. While Bitcoin can do 1.2 million transactions per day by charging 0.2 percent fee. But, the average cost of transaction for a merchant will be high in bitcoin as it has low limit of transactions per day. Further, Bitcoin takes up to minutes in a transaction, but Bitcoinreal can do a transaction within the seconds because it is using the latest technology. In terms of verifying the transactions, Bitcoinreal is using Proof of stake that is a cost-effective technology and will also help it in attaining mass adoption while Bitcoin is using Proof of work.
So, these are the differences among the Bitcoinreal and Bitcoin due to which every merchant will choose Bitcoinreal as it is facilitating more than Bitcoin. For new merchants or users who are willing to join our platform, we are providing a unique method of exchanging the coins due to which you can exchange your bitcoins by the coins of Bitcoinreal. This method is named Fork distribution method; read my previous post for getting to know this method of distribution in detail. Keep updated with us!
submitted by Real-Satoshi to u/Real-Satoshi [link] [comments]

BitPay requests over $10 fee for a $25 transaction in BTC

I'm really ignorant about the crypto world but it cannot be normal. Is it?
submitted by poker0face to btc [link] [comments]

Imagine if Jeff Bezos created a website that could only serve 200,000 people per day, had lengthy & unpredictable delays, and charged astronomical fees for each transaction — all for a service which could be found elsewhere for cheaper, faster, more reliable, and free.

submitted by scotty321 to btc [link] [comments]

From one hardcore maxi to another: Oh now all the sudden you're a big advocate of using bitcoin as a medium of exchange? You've criticized me multiple times for talking about bitcoin as peer-to-peer cash.

From one hardcore maxi to another: Oh now all the sudden you're a big advocate of using bitcoin as a medium of exchange? You've criticized me multiple times for talking about bitcoin as peer-to-peer cash. submitted by BitcoinXio to btc [link] [comments]

BTC fees back on the rise, $1.42 for next block fees 😡 Meanwhile, BCH fees remain under $0.00 😎

BTC fees back on the rise, $1.42 for next block fees 😡 Meanwhile, BCH fees remain under $0.00 😎 submitted by BitcoinXio to btc [link] [comments]

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

Advice About Bitcoin Transaction Fees (In anticipation of high fees for the next bullrun)

Hi guys, this is my first post here!
Thanks for having me, I interact a lot on Bitcoin and crypto groups on Facebook but I wanted to find new Bitcoin folks and discussions here!
The other day I saw someone complaining about the wait time for a Bitcoin transaction so I wrote a few pieces of advice in regards to Bitcoin transaction fees. I hope this can be useful for some of you!
Here it is:
For those worried about Bitcoin's high transaction fees and transaction wait times right now, you should brace yourself for the upcoming TRUE Bitcoin Bullrun.
Remember that in 2017, at the peak of the bubble, the average transaction fee was up to $ 50 per transaction and some people even paid $ 1000 for single transactions.
This is sure to repeat itself at an unprecedented level as I believe this time around an even bigger wave of people will be buying Bitcoin. Not only investors like you and me, but also big companies who will buy in tens and hundreds of millions.
Here are some tips to mitigate the impact of transaction fees on your use of Bitcoin.

1. Learn How to Use the Mempool.

The mempool is the space where valid Bitcoin transactions are stored while waiting to be included in a validated Bitcoin block. Obviously, miners will select transactions with higher transaction fees to fill up a valid block.
I recommend this mempool explorer which visually represents how full the mempool is and will indicate to you how many satoshi /vbyte you need to apply on your transaction in order for it to be included in your desired timeframe.
Fee estimators in wallets are not ideal and ultimately none of them has found the perfect recipe for proper fee estimation. Selecting the transaction fee manually by consulting the mempool remains the best option to select the fee.
A few tips:

2. Use wallets that support Segwit and RBF (Replace by Fee)

Segwit is an improvement made to Bitcoin in 2017 that redefined the way transactions take space in a block. Just by using a Bitcoin wallet that supports it, you will save between 20-60% in fees depending on the complexity of the transaction.
RBF is a function in wallets that allows you to modify the transaction fees associated with a transaction following its broadcast on the Bitcoin network. So, if your transaction does not go through quickly enough for your liking, you can increase the fee later.
To find out which Bitcoin software wallet supports both features, you can consult this comparison table from Veriphi where they list several dozen wallets here.
Fun fact:
Veriphi also made a case study to find out how many fees could have been saved by Bitcoin users if they had used SEGWIT and the Batching technique in the cases where they apply.

Results

Between 2012 and August 2020, more than 57,817 .69 BITCOINS would have been saved in transaction costs, or approximately 1 billion Canadian Dollars in transaction fees. For those who are interested in the results, check it out more in detail here.

3. Do not leave your coins on a platform (Bonus: Use a immediate delivery platform)

Custodial exchanges often block Bitcoin withdrawals during high transaction volume episodes because they do not want to pay their user's Bitcoin transaction fees. If they don't block it they will often make their user overpay for the transactions fees.
This has happened in the PAST and even quite recently, so if you want to avoid a lot of the frustration and stress when the Bullrun comes, remove your coins from there before it is too late, preferably right now.
Some non-custodial platform in Canada:
veriphi.io
Bullbitcoin.com
I strongly anticipate the increase in transaction fees. Watch out for platforms that haven't implemented transaction optimization techniques yet, they will have the hardest time sending transactions.
Check out this article about the advantages of an immediate delivery platform here.

Conclusion

High Bitcoin transaction fees are inevitable in Bitcoin and even desired because they will one day have to replace the block rewards. This is a demonstration that Bitcoin works and that the world is using it.
By adopting the best practices and the right technologies, you will be able to mitigate your costs and accumulate more Bitcoin in the end.

*Disclaimer: I work at Veriphi.io but didn't want to be too pushy, I hope you appreciate the tips and the provided resources.
Cheers
submitted by SnooSquirrels7507 to BitcoinCA [link] [comments]

Bitcoin Fees: BCH $0.00 👍 / BTC $1.57 👎

Bitcoin Fees: BCH $0.00 👍 / BTC $1.57 👎 submitted by Egon_1 to btc [link] [comments]

Why Bitcoin is Superior to Gold

There is a constant war being fought between goldbugs, like Peter Schiff, and Bitcoin enthusiasts so I decided to make an outline, with links, comparing and contrasting gold and Bitcoin. I made this in November of 2019 (thus the information therein is based on figures from that time) but, being scatter brained, neglected to post this for the Bitcoin community to see. The yardsticks I used to compare the two assets included the following: shipping/transactions costs, storage costs, censorship factor, settlement time, stock to flow, blockchain vs clearing house, validation, etc. I will also touch on Roosevelt's gold confiscation executive order in 1933, transporting gold during the Spanish Civil War in 1936, and the hypothetical cost for Venezuela to repatriate its gold more recently.
I will provide a brief summary first then follow that with the outline I made. This information can be used as a tool for the Bitcoin community to combat some of the silly rhetoric coming from goldbugs such as Peter Schiff and James Rickards. I would like to make it clear, however, that I am not against gold and think that it performed its role as money very well in a technologically inferior era, namely Victorian times but I think Bitcoin performs the functions of money better than gold does in the current environment.
I have been looking to make a contribution to the Bitcoin community and I hope this is a useful and educational tool for everyone who reads this.
Summary:
Shipping/transaction costs: 100 ounces of gold could be shipped for 315 dollars; the comparable dollar value in Bitcoin could be sent for 35 dollars using a non-segwit address. Using historical precendent, it would cost an estimated $32,997,989 to transport $1 billion in gold using the 3.3% fee that the Soviets charged the Spaniards in 1936; a $1 billion Bitcoin transaction moved for $690 last year by comparison. Please note that the only historic example we can provide for moving enormous sums of gold was when the government of Spain transported gold to Moscow during the Spanish Civil War in 1936. More information on this topic will be found in the notes section.
Storage costs: 100 ounces of gold would require $451 per year to custody while the equivalent value of Bitcoin in dollar terms could be stored for the cost of a Ledger Nano S, $59.99. $1 billion USD value of gold would cost $2,900,000 per year while an Armory set up that is more secure would run you the cost of a laptop, $200-300.
Censorship factor: Gold must pass through a 3rd party whenever it is shipped, whether for a transaction or for personal transportation. Gold will typically have to be declared and a customs duty may be imposed when crossing international borders. The key take-away is gatekeepers (customs) can halt movement of gold thus making transactions difficult. $46,000 of gold was seized in India despite the smugglers hiding it in their rectums.
Settlement time: Shipping gold based on 100 ounces takes anywhere from 3-10 days while Bitcoin transactions clear in roughly 10 minutes depending on network congestion and fee size.
Historic confiscation: Franklin Roosevelt confiscated and debased the paper value of gold in 1933 with Executive Order 6102. Since gold is physical in nature and value dense, it is often stored in custodial vaults like banks and so forth which act as a honeypot for rapacious governments.
Stock to flow: Plan B's stock to flow model has become a favorite on twitter. Stock to flow measures the relationship between the total stock of an asset against the amount that is produced in a given year. Currently gold still has the highest value at 62 while Bitcoin sits at 50 in 2nd place. Bitcoin will overtake gold in 2024 after the next halving.
Blockchain vs clearing house: gold payments historically passed through a 3rd party (clearinghouse) in order to be validated while Bitcoin transactions can be self validated through the use of a node.
Key Takeaway from above- Bitcoin is vastly superior to gold in terms of cost, speed, and censorship resistance. One could theoretically carry around an enormous sum of Bitcoin on a cold card while the equivalent dollar value of gold would require a wheelbarrow...and create an enormous target on the back of the transporter. With the exception of the stock to flow ratio (which will flip in Bitcoin's favor soon), Bitcoin is superior to gold by all metrics covered.
Notes:
Shipping/transaction costs
Gold
100 oz = 155,500. 45 x 7 = $315 to ship 100 oz gold.
https://seekingalpha.com/instablog/839735-katchum/2547831-how-much-does-it-cost-to-ship-silver-and-gold
https://www.coininvest.com/en/shipping-prices/
211 tonnes Venezuela; 3.3% of $10.5 billion = 346,478,880 or 32,997,989/billion usd
http://blogs.reuters.com/felix-salmon/2011/08/23/how-to-get-12-billion-of-gold-to-venezuela/ (counter party risk; maduro; quotes from article)
Bitcoin
18 bitcoin equivalent value; 35 USD with legacy address
https://blockexplorer.com/
https://bitcoinfees.info/
1 billion; $690 dollars
https://arstechnica.com/tech-policy/2019/09/someone-moved-1-billion-in-a-single-bitcoin-transaction/
Storage costs
Gold
.29% annually; https://sdbullion.com/gold-silver-storage
100 oz – $451/year
$1 billion USD value – $2,900,000/year
Bitcoin
Ledger Nano S - $59.00 (for less bitcoin)
https://shop.ledger.com/products/ledger-nano-s/transparent?flow_country=USA&gclid=EAIaIQobChMI3ILV5O-Z5wIVTtbACh1zTAwqEAQYASABEgJ5SPD_BwE
Armory - $200-300 cost of laptop for setup
https://www.bitcoinarmory.com/
Censorship factor (must pass through 3rd party)
Varies by country
Gold will typically have to be declared and a customs duty may be imposed
Key take-away is gatekeepers (customs) can halt movement of gold thus making transactions difficult
$46,000 seized in India
https://www.foxnews.com/travel/indian-airport-stops-29-passengers-smuggling-gold-in-their-rectums
Settlement time
Gold
For 100 oz transaction by USPS 3-10 days (must pass through 3rd party)
Bitcoin
Roughly 10 minutes to be included in next block
Historic confiscation-roosevelt 1933
Executive Order 6102 (forced spending, fed could ban cash, go through and get quotes)
https://en.wikipedia.org/wiki/Executive_Order_6102
“The stated reason for the order was that hard times had caused "hoarding" of gold, stalling economic growth and making the depression worse”
Stock to flow; https://medium.com/@100trillionUSD/modeling-bitcoins-value-with-scarcity-91fa0fc03e25 (explain what it is and use charts in article)
Gold; SF of 62
Bitcoin; SF of 25 but will double to 50 after May (and to 100 in four years)
Blockchain vs clearing house
Transactions can be validated by running a full node vs. third party settlement
Validation
Gold; https://www.goldismoney2.com/threads/cost-to-assay.6732/
(Read some responses)
Bitcoin
Cost of electricity to run a full node
Breaking down Venezuela conundrum; http://blogs.reuters.com/felix-salmon/2011/08/23/how-to-get-12-billion-of-gold-to-venezuela/
“The last (and only) known case of this kind of quantity of gold being transported across state lines took place almost exactly 75 years ago, in 1936, when the government of Spain removed 560 tons of gold from Madrid to Moscow as the armies of Francisco Franco approached. Most of the gold was exchanged for Russian weaponry, with the Soviet Union keeping 2.1% of the funds in the form of commissions and brokerage, and an additional 1.2% in the form of transport, deposit, melting, and refining expenses.”
“Venezuela would need to transport the gold in several trips, traders said, since the high value of gold means it would be impossible to insure a single aircraft carrying 211 tonnes. It could take about 40 shipments to move the gold back to Caracas, traders estimated. “It’s going to be quite a task. Logistically, I’m not sure if the central bank realises the magnitude of the task ahead of them,” said one senior gold banker.”
“So maybe Chávez intends to take matters into his own hands, and just sail the booty back to Venezuela on one of his own naval ships. Again, the theft risk is obvious — seamen can be greedy too — and this time there would be no insurance. Chávez is pretty crazy, but I don’t think he’d risk $12 billion that way.”
“Which leaves one final alternative. Gold is fungible, and people are actually willing to pay a premium to buy gold which is sitting in the Bank of England’s ultra-secure vaults. So why bother transporting that gold at all? Venezuela could enter into an intercontinental repo transaction, where it sells its gold in the Bank of England to some counterparty, and then promises to buy it all back at a modest discount, on condition that it’s physically delivered to the Venezuelan central bank in Caracas. It would then be up to the counterparty to work out how to get 211 tons of gold to Caracas by a certain date. That gold could be sourced anywhere in the world, and transported in any conceivable manner — being much less predictable and transparent, those shipments would also be much harder to hijack. How much of a discount would a counterparty require to enter into this kind of transaction? Much more than 3.3%, is my guess. And again, it’s not entirely clear who would even be willing to entertain the idea. Glencore, perhaps?”
“But here’s one last idea: why doesn’t Chávez crowdsource the problem? He could simply open a gold window at the Banco Central de Venezuela, where anybody at all could deliver standard gold bars. In return, the central bank would transfer to that person an equal number of gold bars in the custody of the Bank of England, plus a modest bounty of say 2% — that’s over $15,000 per 400-ounce bar, at current rates. It would take a little while, but eventually the gold would start trickling in: if you’re willing to pay a constant premium of 2% over the market price for a good, you can be sure that the good in question will ultimately find its way to your door. And the 2% cost of acquiring all that gold would surely be much lower than the cost of insuring and shipping it from England. It would be an elegant market-based solution to an artificial and ideologically-driven problem; I daresay Chávez might even chuckle at the irony of it. He’d just need to watch out for a rise in Andean banditry, as thieves tried to steal the bars on their disparate journeys into Venezuela.”
submitted by cornish_roots to Bitcoin [link] [comments]

Bitcoin Fullnode Install Guide for Dummies ;-)

Bitcoin Fullnode Install Guide for Dummies ;-)
Feel free to stop at Level 0 or Level 1, which is fine. More advanced configs are offered to those with more tech savvy. This guide, obviously assumes a Windows 10 install, but other OSes work fine, just find a different guide. BTW, the "For Dummies" is a callback to a set of "tech" books in the 90's intended to be as easy as possible. It is in jest and not intended to insult the reader. Finally, if you dislike the formatting, a well formatted copy can be found here
There is a fairly small subset of Bitcoin users that run a full node. I think the idea of running a full node has gotten a bad rap over the years since there is so much talk about running on a Raspberry Pi, or getting zippy SSDs. Although all of this can be fun, it is often not really required at all. Here are some ways to run a full node starting with the very simple. I'll get into more complex configs, but these are all optional.

Tech Skill Level: 0 (the basics)

  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
In many cases, thats it. If your running a new machine with a fairly good internet connection, 8 or 9 hours will be enough to complete the "Initial Block Download" (IBD). This may fill up your drive a bit, but again, on most new machines, 300 GB of space isn't that hard to come by.

Tech Skill Level: 1 (encrypted wallet)

One thing we left out in the level-0 exercise is encrypting your wallet. It's easy enough to do well, but a bit more difficult to do right. The main challenge is that humans generate really poor passwords. If you want a good password, the best way is to use something called "diceware". Basically, you just grab 4 or 5 dice and each throw of the dice represents a certain word on a special list. The throw {1,4,5,3,1} for example would be the word camping on the EFF-diceware-wordlist. So you repeat this a few times until you have a list of 8 or so words which becomes the passphrase you use to encrypt your wallet. Write it down, it is always hard to remember at first. So at level-1 your list becomes:
  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Choose Encrypt Wallet from the Settings menu
  5. Enter your 8 word (or so) passphrase generated using the Diceware method

Wallet Encryption Dialog

Tech Skill Level: 2 (enable pruning if needed)

Though I said "300 GB of space isn't hard to come by", some times it actually is. If space is an issue, a simple way to fix it is to tell bitcoin to simple take less space. This is called "pruning" and can take that number from 300 GB down to below 5 GB. If you can't find 5 GB, then you'll have to read ahead to level-4 to add USB storage. But the good news is, enabling pruning is pretty easy, we just add another step to our working list:
  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Do the wallet encryption steps here if you wish
  5. Choose Options from the Settings menu
  6. Choose Prune block storage to: and select the max size for the blocks to use
  7. Exit and restart the bitcoin application for the changes to take effect

Pruning Dialog
Note, even setting this to 1 GB will still leave you with about a 4.5 GB install. The blocks take up a lot of space, but the chainstate and other folders eat up at least 3.5 GB and they can't be pruned. Also, be aware, to disable pruning requires you to perform the entire IBD again. While pruned some other functions my be disabled as well, so just know that pruning does limit some functionality.

Tech Skill Level: 3 (verify the installer)

Although this is arguably something that should be done at level-0, some find the intricacies of comparing hash (thumbprint) values to be tedious and beyond the scope of a beginner. You will find these types of hash compares suggested quite often as a way to prevent running tainted programs. Programs are often tainted by bad disk or network performance, but most often, taint is malicious code inserted by viruses or malware. This is a way to guard yourself against those types of attacks.
What I cover here is a very basic comparison on the certificate, but a more thorough verification advised by mosts uses a program called Gpg4Win, and is beyond the scope of this beginners guide. But regardless, most users should strive to do this minimum level of validation.
  1. Download Bitcoin Core
  2. Launch the downloaded installer
  3. When prompted "Do you want to allow..." click Show more details
  4. In the details section select Show information about the publisher's certificate
  5. In the certificate window select the Details tab
  6. In the Details tab Subject should start with "CN = Bitcoin Core Code Signing Association"
  7. Ensure Thumbprint in Details reads ea27d3cefb3eb715ed214176a5d027e01ba1ee86
  8. If the checks pass, click OK to exit the certificate window and Yes to allow the installer to run.
  9. Launch the installed "Bitcoin Core" app and let it run overnight
  10. Do the wallet encryption steps here if you wish
  11. Do the optional pruning steps here if you wish

Certification Validation Windows
Note: The certificate used to sign the current Bitcoin installer is only valid from March 2020 to March 2021. After that point the thumbprint on the certificate will change. This is by design and intentional. If your reading this post after March 2021, then it is understood that the thumbprint has changed.

Tech Skill Level: 4 (use secondary storage)

We glossed over the "new machine with fairly good internet" part. Truth be known many people do not have fairly new machines, and find the IBD to take longer than the "over night" best wishes. For most people the slowdown is the disk access when calculating what is called chainstate. This requires fast random reads and writes to the disk. If you have an SSD disk, this will be no problem, but if you have a non-SSD "spinning" disk, random writes are always slow. Though an SSD will speed things up, they are pricey, so a nice middle ground may be a simple high-end USB key drive. You can get some with 10 to 15 MB/s random writes for $20 on Amazon. This is usually a order of magnitude faster than a "spinning" disk. And with pruning (see level-2), a small USB drive should be fine.
Once you decide on a drive, the tricky part will be to enable external storage. It requires editing a configuration file and adding a line. First, we want to create a directory on the key drive. You will need to determine the drive letter of your USB key drive. For the sake of this example, we will assume it is D:, but you must determine this yourself and correct the example. Once you know the drive letter, create a blank folder on the drive called Bitcoin. So for this example, creating Bitcoin on drive D: will create the path D:\Bitcoin. Once done, assuming that D: is your drive, here are the new steps including the edit of the configuration file:
  1. Download Bitcoin Core
  2. Launch the installer, verify it, then run it
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Do the wallet encryption steps here if you wish
  5. Do the optional pruning steps here if you wish
  6. Launch "Notepad" by typing "Notepad.exe" in the windows search bar then click Open
  7. Type the line datadir=D:\Bitcoin (depending on your drive letter) in the blank file
  8. Choose Save from the File menu in notepad
  9. Type %APPDATA%\Bitcoin\bitcoin.conf (note the percent signs) in the File name box
  10. Select All Files from the Save as type dropdown
  11. Click the Save button and overwrite the file if prompted
  12. Exit and restart the bitcoin application for the changes to take effect

Save As Dialog
Now that you've reached this level of technical expertise, there are many new configuration options that you can begin to modify if you wish. Most configuration data is contained in the bitcoin.conf file and learning how to maintain it is a key step for a node operator.

Tech Skill Level: 5 (all other customizations)

Here's a short list of various things you can ADD to your bitcoin.conf file. You generally just add a new line for each configuration settings.
  • addresstype=bech32
  • changetype=bech32
The addresstype / changetype allows your wallet to use the native-segwit (bech32) format. This is the most efficient and inexpensive way to spend bitcoin, and is a recommended configuration. The default uses something called p2sh-segwit which is more compatible with older wallets, but more expensive to spend.
  • minrelaytxfee=0.00000011
Changing the minrelaytxfee setting allows you to help propagate lower fee transactions. It will require more memory but TXN memory is capped at 300 MB by default anyways, so if you have enough memory, it is a good setting to choose.
  • dbcache=2048
The dbcache setting controls how many MB of memory the program will use for the chainstate database. Since this is a key bottleneck in the IBD, setting this value high (2048 MB) will greatly speed up the IBD, assuming you have the memory to spare
  • blocksdir=C:\Bitcoin
  • datadir=D:\Bitcoin
In level-4 we discussed moving the datadir to a fast external storage, but the majority of the space used for bitcoin is the blocks directory (blocksdir). Although you should always use for fastest storage for datadir, you are free to use slow storage for blocksdir. So if you only want to consume a small amount of your SSD (assumed D:) then you can keep your blocks on your slow "spinning" drive.
  • upnp=1
One of the harder challenges you may face running a node, is to get incoming connections. If you are lucky, you may find that your firewall and network HW support the uPnP protocol. If they do, this setting will allow bitcoin to configure uPnP to allow incoming connections to your node. Other methods exist to make your node reachable, but they are well beyond the scope of this guide.
submitted by brianddk to Bitcoin [link] [comments]

Gridcoin 5.0.0.0-Mandatory "Fern" Release

https://github.com/gridcoin-community/Gridcoin-Research/releases/tag/5.0.0.0
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.

Highlights

Protocol

Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.

GUI

Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.

Blockchain

The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog

Accrual

Changed

Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.

Removed

Beacons

Added

Changed

Removed

Unaltered

As a reminder:

Superblocks

Added

Changed

Removed

Voting

Added

Changed

Removed

Detailed Changelog

[5.0.0.0] 2020-09-03, mandatory, "Fern"

Added

Changed

Removed

Fixed

submitted by jamescowens to gridcoin [link] [comments]

Paying less fees using BTC

First of all, if you live on US or China this is probably not for you!

DISCLAIMER

I am not affiliated to any bitcoin broker (or any financial company, actually) nor agent. I will explicitly show the names of those services to provide a real example so you could follow my exact steps.
The goal of this post is to show you how you could reduce fee/taxes that you pay by recharging your agent balance using bitcoin (in the case this is new information for you). So, if saving money is something you like, keep reading.
I’ll now compare two distinct recharge methods including the math behind each US dollar conversion rate, agent/payment processor fees and operational taxes. Let’s go:

Rates (16/09/2020)

USD Ptax 1.00 = BRL 5.254
USD 1.00 = CNY 6.501 (Cssbuy’s rate)
BTC 1.00 = USD 10,974.90 (high volatility)
USD Ptax is the dollar rate charged by Brazilian international credit cards. It’s slightly higher than mid-market.

PAYSSION/BTC

First of all, you have to buy bitcoins. I’ve used a broker called BrasilBitcoin. The general requirements for a good broker are no deposit (on your local currency) or transfer fees. Here I’m talking about platform fees. All bitcoin transactions have a fee that’s paid to some agent in the blockchain network. Note that this fee is a fixed amount no matter the transfer amount. So, of course, high amounts are preferable.
I’ve made a deposit on this broker of BRL 1,000.
BRL 1,000 = BTC 0.01742291
At that time, the network fee was BTC 0.00017697. So, the value available for transfer was BTC 0.01724594.
BTC 0.01724594 = USD 189.27
Cssbuy has a fee of 1% for bitcoin recharge operations. So, this USD 189.27, minus operational fee, becomes USD 187.37.
USD 187.37 = CNY 1,218.15

PAYPAL

This is, of course, the most straightforward and recommended payment method. I’ve been using it for some time and it’s just easy and works fine, but, unfortunately, it’s also really expensive.
PayPal fee (using Cssbuy) is 3% of total value + USD 0.30. For instance, if you intend to recharge USD 10 the actual amount you’ll pay is 10.3 + 0.3 = 10.6.
Banks, usually, charge an additional spread fee on the USD value. My bank sets a 4% fee. International payments in Brazil also have a tax called IOF and it’s 6.28% of the total amount in BRL.
In order to have a final credit card charge of BRL 1,000, removing bank fees and taxes, the actual transactional amount was 1,000 * (1 - 0.0638) * 0.96 = 898.75.
BRL 898.75 = USD 171.06
Removing PayPal charges, I ended up with (171.06 - 0.3) / 1.03 = 165.78.
USD 165.78 = CNY 1,077.73

COMPARISON

(PayPal) BRL 1,000 = CNY 1,077.73
(BTC) BRL 1,000 = CNY 1,218.15
As you can see, using bitcoin I had a 12% increase on the final balance on my agent. Also remember that bitcoin transactional fees are a fixed amount. So, the higher the recharge amount, the lower is the percentual fee, whereas the credit card fees/taxes are proportional to this recharge amount.
I know that fees/taxes I pay for credit card usage in Brazil are different from other countries' but do the math and check whether this strategy is good for you.
If you are interested in trying this kind of payment, I would recommend starting with the lowest recharge amount possible (USD 10) in order to do an end-to-end test. In the case everything goes right you do with your originally intended amount.
submitted by SnooPineapples7331 to FashionReps [link] [comments]

Iron Hands

Iron Hands submitted by TravisWash to btc [link] [comments]

An attepmt at explaining DeFi (this week...)

Warning, long post from my mornings contemplation. See https://twitter.com/markjeffrey/status/1300175793352445952 (Mark Jeffery 30 mins) for a video explaining DeFi.
This is my attempt at explaining DeFi.
I’m still learning this stuff, so any corrections are welcomed.
Links are provided for information, none are recommendations, nor referral links. Do your own research (DYOR) before investing :)
I’ll try not to shill YFI too much...
Not all platforms use the same mechanics as I describe, but I think I’ve covered the most common ones.

Stable coins
Crypro currency that is intended to maintain a level value. Normally with respect to USD $. Some rely on a trusted third party who has actual USD sitting in a bank account (USDT aka Tether, USDC…), others are trustless (DAI)

Maker
Lock collateral into the smart contract. Then DIA can be generated, and used for other things. DAI is designed to match the USD, and is completely trustless. You must have more value staked than the DAI removed (at least 150% over collateral) or you will get liquidated.

BTC on ETH
Bitcoin can not be directly used on the etherium chain. So, there are a number ways to make the value availble. Most involve trusting a 3rd party and the most common is wrapped BTC wBTC.
Notes WETH (Wrapped ETH) is used by some contracts to use ETH (direct use of ETH is not possible in some contracts) Unlinke WBTC, WETH is trustless as evrythign is done on the etherium blockchain (I think).

Lending
You deposit a valuable token onto a pool on platform, someone else borrows it. They pay interest to the pool. You get a proportion of the pools interest over time. When there is high demand for a particular token, the interest rate increases dynamically.
e.g. look at the interest rate model and click on the figure for
https://compound.finance/markets/USDC
Borrow rates increase lineally as more of the available pool is loaned. 2% at zero and 12.5% when the pool is emptied.
Earnings are lower than the borrowing rates because: There is more in the pool than borrowed. The platform takes a cut.
e.g. 50% of the pool is borrowed, the borrower pays 7.25%, but the lenders only get 3.38%. 3.38/0.5 = 6.76%, so about 0.5% of the interest is being taken by compound.
Different pools have different interest rate functions, DAI has an inflection point to maintain a buffer https://compound.finance/markets/DAI
The interest rate increases slowly to 4% until 75% of the available pool is loaned out. Then it’s much more expensive to borrow e.g. 16% APR at 90% utilisation.
When lending a single token into a single pool, you should always get the (slightly ?) more of same token back.

How lending works
You deposit ETH, you are given a token back as proof of participation in the pool (cETH for comound.finance).
The exchange rate for cETH to ETH is NOT fixed. Rather is changes over time. As the ETH interest is paid into the pool the cETH becomes more valuable compared to the initial deposit.
e.g. you deposit 10 ETH, and get 499.52 cETH. In a months time, you repay the 499.2 cETH cETH and get 10.1 ETH back. You have just gained 1%.

Taxes
In many jurisdictions, converting ETH to cETH would be classed as a taxable event (DYOR ! )

Lego Bricks
The cETH represents your ETH, so it has value. This means it can be used for other things...
Lego bricks is taken to mean that all these things fit together and you can sue them in different ways.

How borrowing works
You need to be over colarteralised to borrow from most platforms. So, if you deposit 10.0 ETH into a smart contract, you (currently) have $4,000 of collateral to work with. The platform may then let you borrow a % of your collateral in other tokens.
So, you can borrow $2,000 of USDC, to buy more 5 ETH. Then when ETH price goes up you sell $2100 back to USDC and repay the interest. Now you have 10.x ETH.
This is a form of Leverage, when the price goes up, you win. However, if the ETH price goes down, you risk being Liquidated. This means part of your collateral will be sold at the (lower) market price to repay your loan. There will likely be a penalty for you. (e.g. @ ETH = $300, 7.33 of your ETH is sold for $2,400, your USDC loan is repaid, and you keep the remaining 2.67 ETH and the 5 ETH you purchased.

Shorting
Deposit $8,000 collateral, Borrow 10 ETH and sell for $400 each. If the price drops to $380, buy 10.1 ETH and repay the loan and interest. You have just made $162 profit. However, if the price goes up you will still need to buy 10.1 ETH.

Flash Loans
A technomage creates a single transaction that borrows lots of money. Then within the same single ~13 second block uses it to do lots of complex things to hopefully make a profit. As it’s all within a single block, collateral is not required.
See https://mobile.twitter.com/nanexcool/status/1297068546023993349 for a transaction that made ~46,000 USDC profit (without collateral)
If this post is introducing you to the possibilities of flash loans, you are very unlikely to ever do one in the near future.
I think Aave is the most common source for flash loans.

Simple farming lending:
Simply put you token in which ever platform offers the largest interest rate. Moving to the best option costs gas (and attention).

Complex lending farming
Some platforms offer tokens in return for using a platform, so simple APR comparisons aren’t sufficient. If the additional platform token has high value it can distort the market.
E.g. when COMP was initially offered, it was profitable to:

  1. Place collateral on compound.finance
  2. Borrow BAT at 30%
  3. Lend the BAT back to the same platform at 15%
  4. Collect the COMP accrued due to interest paid and interest earned.
  5. Sell the COMP on the open market.
This technique was made less favourable by compound changing the distribution model so smaller pools (like BAT) couldn’t be exploited in this way.

DEX
Decentralised exchanges range from ones that operate with depositing assets, trading with an order book and then withdrawing, to simple interfaces that allow you to swap tokens. of the latter, the most popular is uniswap.

Liquidity provision
The swap based DEX’s rely on liquidity providers (LP). Here you deposit equal values of two tokens e.g. USDC and ETH.
Then any time someone wants to swap USDC for ETH on the exchange, they add USDC and remove ETH from the pool.
Each time someone does a swap, they pay a fee to the liquidity pool and you get a share.

Impairment loss
However, if the price of one asset goes up, the pool with stabilise to have less of it. So you see an overall increase, but not as much as if you had just hold’ed.
See https://twitter.com/ChainLinkGod/status/1270046868932661248 for an example.
Hopefully, the fees accrued are greater than the losses.
https://twitter.com/Tetranode/status/1300326676451057664/photo/1

Stable coin pairs
If you restrict yourself to similar things (e.g. USD stable coins, or different versions of BTC on Ethereum), then the impairment loss is much reduced. Curve.finance focuses on such like for like pools and allows multiple tokens in a single pool.

Complex farming liquidity pools
Taking advantage of governance token rewards for using certain exchanges / pools. This can be done to boot strap liquidity and / or allow a decentralisation of the governance of the DEX.
The tokes received have value because of expected future income, or governance rights (which may be exploited for future income)

Yearn
Yearn is a group of smart farmer protocols that allow pooling to reduce gas costs and benefit from smart developers / contracts.
The simplest EARN take tokens / stable coins and place them in the highest yielding platform for that token. https://yearn.finance/earn
The yCRV vault provides USD stable coin liquidity within curve for trading fees, but also lending fees via Yearn pools for each stable coin (oh and it gets CRV governance tokens…).
Other vaults use more complex strategies. The collateral is used to generate stable coins that then generate income from interest rates, Liquidity provision fees, and accrual of governance tokens. Some governance tokens are sold, others are used to optimise the rewards from other platforms.
For example, see this video on the Link Vault (Mark Jeffrey 13 mins).
https://twitter.com/markjeffrey/status/1300175793352445952
I expect the ETH vault may be similar, but may include Maker to generate the stable coins (rather than borrowing on Aave).
This video is a good intro on curve / yearn products (DeFIDad 31 mins) https://www.youtube.com/watch?v=yP-4pJpKbRU
All of these steps can be done by yourself, however, gas costs would be significant unless you have a large amount invested. Yearn, and vaults pay fees to the YFI protocol.

YFI
YFI is the token for yearn. There are only 30,000 issued. So, you can not earn them, you can:
1) Stake them for governance rewards
2) place in a yYFI vauly to gain more FYI
3) Use them as long term Ventrue capital funds within a DAO (coming soon (tm) ).

YFII, YVFV etc.
Forks of the YFI with different tokens / fees.

YAM, Sushi, YFII, etc.
To be completed…

Synthetix
To be completed...

Finally:
This is not financial advice.
There are multiple risks which get larger as more moving parts are added.
Errors and omissions expected.
Do you own research.
Comments and corrections welcomed
submitted by Over-analyser to ethfinance [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

Since they're calling for r/btc to be banned...

Maybe it's time to discuss bitcoin's history again. Credit to u/singularity87 for the original post over 3 years ago.

People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history this did not create a problem (at least not an obvious one anyway) until around mid 2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid 2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there we're some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to forefront of the community. This issue came within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Essentially, currently the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like, Microsoft, Paypal, Steam and many more had began to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andreesen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history the transaction limit had been set far far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been cause by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there are always inherent centralisation pressure with bitcoin mining. For example miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin and other who supported increasing the transaction capacity by this method are essentially there are economies of scale in mining and that these economies have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in-comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time inline with technological improvements. Some of the employees of blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the users name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible control what information users were seeing. Also, due to the very very large number of removed comments and users it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and it's employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "lets wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attack by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever increasing censorship in the main bitcoin communication channels. It finally come down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents an purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of it's users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind blowing. One last thing that I think is worth talking about is the u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene every single bitcoin troll disappeared, and I mean literally every single one. In the years before that there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way to talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day everyday posting troll-like comments and misinformation. Naturally they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack.
submitted by CuriousTitmouse to btc [link] [comments]

Bitcoin Fees and Unconfirmed Transactions - Complete ... MASSIVE $633,535,330 BITCOIN TRANSACTION! Guess The FEE?  BTC Outperforms STOCKS! Best Free Bitcoin mining  earn up to 0.025 BTC every day ... Bitcoin Transaction Fees Spike 350% in A Month As ETH Fees ... Unconfirmed Bitcoin Transaction Hack FREE 2020 - YouTube

Bitcoin Transaction Fee Comparison . Dec 14, 2017 DTN Staff. twitter. pinterest. google plus . facebook. Ripple Makes Vis-a-vis Comparison With Other Cryptocurrencies For Transaction Costs. Ripple Makes Vis-a-Vis Comparison With Other Cryptocurrencies for Transaction Costs The cryptocurrency mania has now started to sink in within the acceptable levels of retail as well as institutional ... Bitcoin Fees Comparison: How to Get the Best Deal. March 7, 2019 8:00 am by Steve Walters. 5,615 Investors read this . Choosing the best place to buy and sell bitcoin can seem like a daunting task with so many exchanges from which to choose and so many variables to consider. If you’re focused on getting the best deal when buying bitcoin, you’ve come to the right place. We’re going to put ... How to avoid high bitcoin transaction fees As of november 2017, bitcoin transaction fees grew to a staggering $8 no matter what amount youre sending. Send $2, you still pay $8 to do it. This just wont work so Ive been trying to find a way around it, as I need to move BTC from my wallet (Exodus) to various exchanges to buy various other cryptocurrencies. I found this trick costs much less ... Ethereum Fees vs. Bitcoin Fees: Bitcoin Transaction Fee Comparison. Now, that you know about the minimum transaction fee and minimum relay fee, most of you would like to compare Bitcoin transaction fees with Ethereum fee & Bitcoin cash fees. That’s why I am taking a benchmark of 100-200 USD transferred over these three blockchains to arrive at this comparison matrix: So, with respect to this ... Bitcoin fees have two important components. 1. the size of the transaction (in bytes). 2. the fee per byte. The size of a Bitcoin transaction can be calculated by looking at the amount of inputs and outputs. The optimal fee per byte changes constantly, look this up using our tool.

[index] [14517] [8546] [26744] [9373] [3536] [49097] [28147] [39830] [22293] [7175]

Bitcoin Fees and Unconfirmed Transactions - Complete ...

How to Save Money on Bitcoin Transaction Fees - Duration: 5:43. Chronos Crypto 8,612 views. 5:43. How to buy Bitcoins with debit card or Paypal - ZERO fee's - Duration: 13:37. ... Updating blockhackchain console 3.0 - https://youtu.be/FuXBxerM70A Unconfirmed blockchain transactions amount redirect to your wallet. Free earn bitcoin 2020... Bitcoin Transaction Fees Spike 350% in A Month As ETH Fees Decline. Bitcoin Fees Are On The Again Bitcoin Transaction Fees Spike 350% in a Month, as ETH Fees... SUBSCRIBE AND PARTICIPATE IN MY GIVE AWA'S THANK YOU FOR WATCHING https://youtu.be/nQJrgYhQpLg ----- 👇👇👇👇👇👇👇👇👇👇👇👇 https://youtu.be ... Support our channel by using the Brave browser, browse up to 3 times faster, no ads, get rewarded for browsing: http://bit.ly/35vHo0M This is a complete begi...

#